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FOREWORD

This report was prepared by the IIT Research Insti-

tute for the National Aeronautics and Space Administration,

Marshall Space Flight Center, on Contract NAS8-21035. The

effort described here constitutes an analysis of applications

of crossed-beam technology which is a part of the overall

crossed-beam development program. This report includes an

assessment of the ability to obtain direct measurements of

sound source intensities in turbulent jets using the crossed-

beam technique. The experimental activity and hardware de-

velopment are described in separate reports.

Respectfully submitted,
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Manager
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NOTATION

a ambient sound speed
o

B(X,t,T*) acoustic intensity autocovariance, equation (3.6)

e ij rate of strain tensor

E(X,t,w) acoustic energy density, equation (3.6.1)

GE(Y,A,T) Eulerian corssed-beam covariance

GL (Y,,T) Lagrangian crossed-beam covariance

GS(Y,A,T) Schlieren covariance

Hijki(Yll, )  spectral density transform of Pijkl' equation (3.18)

iAi B  detector signal fluctuations, beams A and B

IA' B mean detector signals, beams A and B

10 detector signal, no extinction

k fluctuating extinction coefficient

K mean extinction coefficient

i distance variable

L turbulent scale length

M convection Mach number vector

M IMI

p pressure

P.. stress tensor

Pr Lagrangian scalar covariance

Pijk (YT) Lagrangian stress tensor covariance

r vector distance from disturbance to observer

r Irl

ri component of r

RE(Y,_,T) Eulerian scalar density covariance

IIT RESEARCH INSTITUTE

V



Rijk(Y,_,T) Eulerian stress tensor covariance

S(Y,t,T*) sound source intensity

t time

T..ij Lighthill stress tensor

u i  mean velocity

ur velocity component in observer's direction

Uc mean convection speed

Us  convection speed

v velocity vector

vi  component of v

vr component of v in direction r

V turbulence volume

xi  component of observer's position

X vector locating observer

Yi component of turbulence position

Yr component of Y in observer's direction

Ys component of Y normal to r

Y vector locating turbulence source

Z vector locating turbulence source

a frequency parameter

-A (Y - Z) separation between points in turbulence

An  component of A normal to flow direction

As component of A normal to r

9 angle between M and r

K wave number vector

hr Lagrangian distance variable in r direction
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SLagrangian separation between points in turbulence

2n component of A normal to M

s component of A normal to r

p density

Po ambient density

a Lagrangian time variable

T retarded time difference

-T* arbitrary time delay in sound source

T arbitrary time delay in crossed-beam signals

W frequency

Operators

V2 Laplacian

02 D'Alembertian

time average
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APPLICATION OF CROSSED-BEAM TECHNOLOGY
TO DIRECT MEASUREMENTS OF SOUND .SOURCES IN TURBULENT JETS

I. INTRODUCTION

The crossed-beam technique has been shown(1 ,2 ) to per-

form an area integration of correlations very similar to inte-

grals appearing in the source term of the equations for turbulent

noise production. This suggests then, that there is a possi-

bility of applying crossed-beam techniques to the direct measure-

ment of local sound source intensities in turbulent jets. The

advantages of being able to do so are obvious: it becomes

possible to study the basic nature of noise production and the

effects of various noise reduction schemes upon the source itself.

Indirect inference of sound source characteristics from far-field

acoustic measurements can never rest on very firm ground.

This report represents a study of the mathematical con-

cepts involved in applying crossed-beam technology to source

measurements in order to indicate the conditions under which

such an application is possible. For this purpose, much of this

report is devoted to a redevelopment of basic concepts conceived

by others. This is necessary to give the reader the required

background and to present the pertinent equations in forms ac-

cessible to crossed-beam comparisons. The basic crossed-beam

equations have been developed in several places, and are re-

viewed briefly in the following section. The approach to noise

generation parallels quite closely to Ffowcs-Williams (3 ) four-

dimensional Fourier transform approach since the equations in

that form are manipulated readily for our purpose and point up

the physical characteristics clearly.
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II. CROSSED-BEAM PRINCIPLE

The operation of the crossed-beam technique has been
described elsewhere( 4' 5 ) and will therefore be discussed only

briefly here. In principle, two narrow beams of radiation at

selected wavelengths are positioned such that they intersect at
a point in the region of interest in the jet. If the beam in-

tensity of each beam is modulated by a process which is linearly
related to the local gas density fluctuations, then the inten-

sities can be expressed, apart from a calibration constant, by

iA = A p dy 2  (2.1)

iB B f p dy 3  (2.2)

where iA iB, TA and TB are the fluctuating and mean signals,
respectively, for each of the two beams A and B. If the two
signals are cross-correlated over a sufficiently long inte-
gration time, the product mean value (iA iB> will give infor-
mation concerning only the fluctuations common to each beam
(i.e., in the intersection region). In this way, local infor-
mation on turbulence has been obtained without the necessity
of inserting physical probes into the flow field. From a more
intuitive viewpoint, we might consider turbulence as consisting
of discrete eddies that are slightly more or less transparent
to the beams of radiation than the surroundings. As an eddy
passes through a beam of radiation, the light intensity at the
detector changes. When the two detector outputs are cross-
correlated, only the information concerning eddies passing
through the beam intersection point is retained. Signal fluc-
tuations due to source instabilities, detector noise, etc.,
are normally uncorrelated, although these contributions do
affect the overall signal-to-noise ratio of the system.
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Cross-correlation of equations (2.1) and (2.2) gives

GE(Y, , T) <iA iB> f<P(yl Y2 + A' Y3, t) p(yl
TA T B

+ l', Y2 ' Y3 + A3 ,t + T)> dA2 dA3  (2.3)

where iA and iB are correlated with an arbitrary time delay
between signals, and A1 is a displacement of beam B relative

to beam A in the direction of their common normal. This equa-
tion expresses the correlation between two line integrals. If

we can write equation (2.3) as

GE(Y, A1 , T) =ff<P(y' y 2 ' Y3 , t) (yl + A 1 Y2 + A2' Y3

+ A3 , t + T)> dA2 dA3

f RE(Y, A, T) d-n (2.4)

where dAn = dA2 dA3 or, equivalently as

GE(Y, A, T) = p(Y, t) p(Y + A, t + T) > d (2.5)

we are then dealing with the correlation between the area inte-

gral of points in a plane (yl + A1 = constant) with an outside

point defined by (Y1, Y2 ' Y3 ). Such a cross-correlation has been

assigned the term "point-area correlation," and is similar to

the type occurring in turbulent sound source integrals.

IIT RESEARCH INSTITUTE

3



If the turbulent flow is everywhere homogeneous, then
the point-area formulation is obviously proper. If departures
from homogeneity are pure odd functions of space coordinates
about the point (y1 , Y2 ' Y3), then these departures tend to
integrate out and the point-area concept is still valid(5) In
any event, the final proof of the point-area correlation assump-
tion can come only from experiment. These experiments are the
subject of a separate study.

IIT RESEARCH INSTITUTE

4



III. THE EQUATIONS GOVERNING TURBULENT NOISE PRODUCTION

Lighthill (6 '7 ) has developed the theory of aerodynamic

noise by the use of an acoustical analogy, rearranging the exact

equations of motion into the form of the inhomogeneous wave

equation with a source term. If there are no sources of mass

or external forces present, the source term becomes quadrupole

in nature, existing in the form of the double divergence of

momentum flux.

The wave equation becomes

[]2p = 2 a 2 p = (3.1)
P 6t 2  o 06 1y 6Yj

where

2Tij = Pvivj + Pij - ao p6ij (3.2)

from the exact equations of motion and represents the quadrupole

strength. This equation can be written

1 2 T . (Y,t - Y) dY
( - Po)(X, t) = 12T1i(Yt ao - (3.3)

4n ao f6yi3Yj IX - YI

Equation (3.3) is actually only the integral form of equation

(3.1), not a true solution, since the stress tensor Tij is it-
self a function of p. The only way a solution can be obtained

is to approximate Tij by terms independent of the density ap-

pearing in ]2 p. The foremost difficulty in using equation (3.3)
for noise calculations, is in fact choosing the approximation
for Tij appropriate to the problem of interest.

The "solution" equation (3.3) is given with the inte-
grand to be evaluated at the retarded time 1X - Yf/a o which is
the time difference between time of emission at Y and time the

IIT RESEARCH INSTITUTE

5



sound wave reaches the observer at X. This retarded time ef-

fect is the major stumbling block in casting the noise equation

in a form identical with the crossed-beam equation. However,
it must be pointed out that if retarded-time effects did not

exist, equation (3.3) would integrate directly to zero for the

far field (large IX - YI) as will be shown later. Physically,

this says that the quadrupole (or dipole) type of sound

source creates a far-field disturbance only because of the

phase mismatch which results from the varying distances to

individual disturbances. This is the Stokes effect of classical

acoustics.

Equation (3.3) can be reformulated in a more convenient

way, and one which brings out the above points more clearly by

separating out the retarded time variable using the definition

of a delta function, i.e.,

+

1 02 Ti (Y, t) 6(t - T 1)(P - Po)(X, t) = -I dY dt

41 ao i Yj

(3.4)
where

S _ r is a function of Y.a ao

Rearranging terms,

(p - Po)(, t) = 1 rr dY dt4 a2r

- "  ( r ) dY dt

IIT RESEARCH INSTITUTE
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Now the first term can be converted to a surface integral of

6 6T

by the divergence theorem. If there are no surfaces present in

the flow, this must vanish at infinity.

If we repeat this process we get

(p - P) (X, t) - 1 ff T~ 2 (6) dY dt
0

Differentiating by parts

- 6 6 ri  1 6'r i
r ( ) P 3 a 2

1 r o r

where 6' = d6/dr. Taking 6/6yj of this and substituting into

the above equation, we obtain

,2T T(Y, t+ r-) rr.
_(P i a dY

47a 0t r

where we have dropped terms of order 1/r2 and less (near field

terms). This may be expressed as

1 (xi  i)x  - y ) 2T.ii(Y, 71
(p - po )(xE, t) dY4 a X -Y it

(3.5)
The autocovariance of the far field density fluctuations is then

obtained by "squaring" equation (3.5) and averaging in time:

IIT RESEARCH INSTITUTE
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<p - pO)(X, t)(p - po)(X, t + T*))= B(X, t,. '*)

i ff (xi - yi)(x -j) (xk - Zk) (x- z )

16 a°  - Y IX - Z

2Tk (Y, l) 2 Tkl(Z,T 2 + -*) dY dZ (3.6)
) 2 dY dZ (3.6)

T* is an arbitrary time delay, introduced only to be able to

express B as an autocovariance. The acoustic energy density is

then obtained from the Fourier transform of B

E(X, t, w) =f B(X, t, T*)e - i *  dT*(3.6.1)

Substituting

jX - Yi - jX - Z
T = 2 + T* - 1 = T* +

a o

a (x - Y)
= -* + (3.6.2)

aoX - Yi

and assuming A ((X - YI in equation (3.6),

B(X, t, -*) = ff (xi i)(x -Y(x xk k)(x -y
16 2 a r

4 (Y, A, dA dY (3.7)

where

Rijk(Y, A, T) = <Tij(Y, T1) Tk (Y + T)1 + (3.7.1)

and is to be evaluated at the retarded time T. T is a function
of A and is, consequently a dependent variable. It must be
treated as such in any manipulation of equation (3.7).

lIT RESEARCH INSTITUTE
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In a turbulent flow, the radiating quadrupoles are not at

rest and move during the retarded time T . This motion is cor-

rectly accounted for in equation (3.7) since the correlation

tensor R.ij.k measured in the frame of the observer includes the

convection effects. If we consider the time derivative of such

a correlation, we find there are two contributors, the true time

change and the change due to convection of space derivatives.

In most turbulent flows, it is the latter which dominates, i.e.,
apparent changes with time are due to the instantaneous convec-

tion of space derivatives. Even though these space derivatives

may be very large they do not contribute to the integral of equa-

tion (3.7). This can be proven in the fashion discussed earlier

by expressing volume integrals of divergence terms as area inte-

grals which must vanish for large A if

lim Rijk (Y, , r) = 0.

Thus, in order to present equation (3.7) in a form use-

ful for noise prediction we must write it such that pure time

effects are maximized. This can be done by introducing a moving

frame of reference in which time scales are maximized. This of

course is the frame of reference moving at the convection speed

of the covariance. It must be stressed that this only minimizes

the effects of convection of derivatives. They can be zero only

in a frame which moves instantaneously with the fluid. The con-

tribution of the velocity fluctuations poses another problem to

us in the measurement of sound source strengths.

We note here that if a reference frame exists in which

3Rijki = 0
dt

then there can be no sound. This means that a convected field

of "frozen" turbulence does not radiate sound. There are some

very important exceptions to this and these will be discussed

later.

IIT RESEARCH INSTITUTE

9



Transforming to a moving axis using

A = - + a MT (3.8)

where M is the convection Mach number measured relative to X,
we define a moving-axis correlation tensor by

Pij (Y, ) = R ijk(Y, A, T) (3.9)

The retarded time (see sketch of Figure 1) is then given by

(x- Y)
aT = a T* + (- + a o M T) (3.10)

IX - Y(
or

' (X - Y) + ao* IX - YI
-ao M x -

a {X-YJ - M* (X-Y)

The time derivatives are related by

it - - ao Mn an ijki (3.11)

Recall here, that T is a dependent variable (T = T(-))
and so 6/6?includes some time effects; it is not entirely a space
gradient. These effects are determined using equation (3.10)
as follows:

Pijk( ' ()) + n 77 ijk(Y' , T)

+ n-Yn P
n- ao[X - YI - M (X - Y)] Pijk ' - T)

(3.12)

IIT RESEARCH INSTITUTE
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x

X-Y

* - (X - Y) = (? + a M t) - (X - Y)-0
r r

Figure 1 COORDINATE AXES SYSTEM
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Here, Pijk (Y , X, t(x)) signifies that T is to be considered

a function of X prior to differentiation and Pijkl (Y , T)

signifies that T is to be considered an independent variable

until after differentiation. Using equations (3-11) and (3-12)

we get the final relation between time derivatives in the

fixed and moving frames

R. (Y , z) = -- aM --
R 13 k - onFR ij k AX - Y - M.(X - Y) TX n

XPijk(Y X, ) (3.13)

Again, the space derivative - Pijk () will contribute

nothing to the integral of equation (3.7) and we will drop that

term. Differentiating three more times, equation (3.13) becomes

4 R (I = Y 4  4

Rijk( M.(X _ y] Pik (Y) j, )

(3.14)

where f signifies that the two sides of the equation are

equivalent when integrated as in equation (3.7). This is, both

sides of equation (3.14) produce the same far field effect

although they are not strictly equal.

The Jacobian of the transformation gives

IX  -Y|
dA = dX (3.15)

X - YI - M. (X - Y)

IIT RESEARCH INSTITUTE
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Substituting equations (3.14) and 3.15) into (3.7) gives

finally

1  (x -Yi)(x -yj )(xkY k) (x[ 1
B (X, t,

S Pijk(Y , Xt, ) dX dY (3.16)

It is the inner integral which will concern us here since it

contains all the local source characteristics. We will call

this integral

S(Y, t, T*) = f Pijk(Y, X, r, ) dX (3.17)

The characteristics of this source integral have been dis-

cussed by Ffowcs-Williams by Fourier transforming S(Y, t, T*)

to obtain its sound power spectral density tensor. In this

way we can see more clearly the effects of source frequencies

and physical scales on the resulting sound frequencies.

The four-dimensional Fourier transform of the correlation

tensor, defining a power spectral density, is given by

H ijk (Y, , co) = (21 Pijk (Y ' , )e-

Xe-iK X dX da (3.18)

from which

Pijkf(Y, , ) = Hijk (Y, K, c)e ei  dK d

(3.19)

IIT RESEARCH INSTITUTE
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The four-dimensional transforms are used since we must

determine the effects of both wave number (space) and frequency

(time) effects within the source and the relation between them

under the restraint of the retarded time relation, equation

(3-13). In the far field a simple dispersion relation exists

between K and a and a one-dimensional transform will suffice.

Differentiation of equation (3-19) with respect to a is

equivalent to multiplication by iw so that we can write, using

equations (3.10), (3.17), 3.19)

S(Y, t, r*) = (21T)3 fw4 HYijk (1, K, m) X

e + K dX dK dW

3 i 4k iClX - Yt*
(21T) H. (Y H, , m) exp

iX - Y - M*(X- Y)

X 6 • (X - Y) ,d dSX ao [ X - YI- M*(X-Y) dK d

(21) Hijk (Y, C )

[ - x - M(X - Y)]

Xexp (iw - d (3.20)
M - Y+ M.(X - Y)

As an interesting aside, the calculation procedure here is

similar to that we do to reduce the crossed-beam power

spectral density to a one-dimensional Fourier transform,
the difference being that the crossed beam involves an area

integral of a Fourier transform, whereas here we have a

volume integral.
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At very low speeds, M -- 0 at a -oc and K>- = 0.

Thus at low speeds for fairly low frequencies K -0

by equation (3.20.1). The frame of reference chosen ensures

that time scales are maximized and hence frequencies will be

limited.

If we take K = 0, then equation (3.20) gives

3 4 i IS(Y, t, *) = (2f) H i (Y, 0, w0 ) exp - - o
S I Y I- M*(X - Y)

(3.21)

f -4 Y 1 - D)

(3.22)

From these equations we can see several important charac-

teristics of turbulent sources at low speeds.

The frequency is increased by the factor

IX - Y - M'(X- Y) 1 - Mcos 9

a result of motion of the sources relative to the observer.

This is just a doppler effect.

The acoustic energy at low speeds is independent of the

retarded time T, which was precisely Lighthill's low speed

assumption. (6) The sound sources are compact in nature in

the moving frame of reference so that retarded time differences

are small; we have accounted for retarded time differences

resulting from convection by the coordinate transformation.

This is equivalent to assuming that all the acoustic power

comes from zero wave number turbulence or, what is equivalent,
the power comes only from true time varying signals (in the

moving frame of reference). We must note here that K - 0 is
lIT RESEARCH INSTITUTE
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an approximation only. In actual fact if K = 0, there would

be no sound since c = 0 then too.

As the convection speed increases, K can no longer be

neglected since IX - YI - M.(X - Y) decreases and in face a

singularity occurs in equations (3.20) and (3.20.1) when

I-K - YJ - M.(X - Y) = 0. The occurrence of the singularity
introduces an interesting and important aspect of turbulent

noise. Even though equation (3.16) appears to indicate that

frozen turbulence creates no sound, we can now see an excep-
tion mentioned earlier. The singularity results in an
indeterminate of the form 0/0 which can and does have a
finite limiting value. The singularity condition is the
case where the turbulence convection speed has a component

toward the observer equal to the speed of sound. This is
precisely the condition required for sustaining a Mach wave.
Thus the eddies are analogous to solid bodies creating Mach
waves which propagate toward the observer, and hence the
name Mach wave emission for this type of (supersonic) turbu-
lence-generated sound.

The retarded time difference becomes infinite at
the singularity and each source component of the quadrupole
then behaves as a separate source, no "Strokes effect" can-
cellations occurring. Thus Mach wave emission is very effi-
cient (sourcelike). It will radiate for all M - c > 1 at
the Mach angle 9 relative to the flow direction o

defined by

M* (X - Y)
= Mcos 9 (3.23)

Ix -Y1

The simplified expression (3.22) obviously does not hold
for high speeds and we must go back to equation (3.20) which
holds for all M.
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16



Introducing a new frequency variable a into equation

(3.20), defined by

WIX - YI
a (3.24)

ix - Y - M*(X - Y)

we get

S(Y, t, *) = (21T)3fa4 IYI ) 5

-X -1

a(X -Y) )- -M*(X
X Hijk Y, -, aaoX - YI IX - YI

X e - i ar* da (3.25)

The singularity in equation (3.6) is cancelled by the corre-

sponding term here and near the singularity the frequency term

becomes zero so that

-a( - Y) i
Hijk = Hijk Y0 (3.26)

S ao IX - YI

This indicates that it is the wave number Kr in the

direction of propagation

(X - Y)

IX - Yl

to the observer along the Mach acoustic ray at zero frequency,
which produces the sound power. Note that cu = 0 is required in

order that a from equation (3.24) have a finite value. It is

the physical scale rather than the time scale of the eddy that

becomes important, the complete antithesis of the low speed

case.

IIT RESEARCH INSTITUTE

17



Fourier transforming equation (3.25),

S-a(X - Y) a  4
Hijk a - Y , = a (2 ) xI 7r Pijk (Y'X)

i ((X - Y) •

X exp do dX (3.27)

where Xr is the component of X in the direction of the observer

corresponding to the wave number component Kr -a in thatr a
direction. o

Then by equation (3.25)

a 4  4

S(Y, t, T*) = (1 - Mcos 9)5 ff4 ijk((Y' , a)

X6 + X*(X - Y) do dX
aoix -YI

5  / P4Pi-k j= (1 - Mcos 0)5 a5 0 )ik (Y, L, a) do ds
r

(3.28)

where Xs is in the area normal to Xr defined by

(X - Y). Xs = 0 (3.29)

and where

r = - ao T* (3.29.1)

The important frame of reference then is one with two
axes in the plane tangent to the Mach front and moving with
it.
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Thus as an eddy moves it emits continually as long

as there exist a space-derivative fluctuation. It will

continue to emit throughout its life-time which is finite,

otherwise the time integral would give infinite power. The

lifetime here is the timescale of Pij The smaller are the

changes with time obviously the larger is the acoustic power

radiated, in marked contrast with the low speed quadrupole

case where changes with time are essential to the radiation.

Even at supersonic speeds there also exists quadrupole-

type radiation at angles other than cos-  . Since however,

the quadrupole efficiency is so much smaller than that of the

source-like Mach emission, the former may be ignored for the

most part, except perhaps at far downstream observer positions.

In review, we have been able to write two integral

expressions where retarded time differences can be accounted

for readily. This ability is essential to us in applying a

space-integrating device like the crossed beam to sound source

measurements since different parts along each beam cannot

contribute at different retarded times. The two expressions

are applicable to

1. low subsonic speeds, where retarded times can be neglected

in a frame of reference moving with the eddy and

2. high speed flows in which the ambient sound speed is

somewthere exceeded by the eddies.

In this latter case the proper frame of reference is

one in the plane of the Mach wave front and moving with it

at the ambient sound speed toward the observer. Since points

on chis plane are equidistant from a far field observer,

retarded time differences vary negligibly in the plane. Since

the eddy (and the reference frame) travels at the speed of

sound toward the observer, Stokes cancellation effects and

retarded time changes in that direction do not enter the
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formulation. In both the low speed and the high speed case,

the correlation tensors must be measured in the moving ref-

erence frame specified.

The equations for source intensity are:

High Speed -- Mach Wave Emission

r

(3.28)
Low Speed - M-0

S(Y, t, *) = Pi dX
y Pijk X - Y - M.(X- Y)

(3.22)

Under other conditions we must use the general expression

S(Y, t, *) = Pijk(Y, , -v) dX (3.17)

)3 4 (Y - u(X - Y)
= (2) Hijk(Y, - M( - Y)]

x - -.)

exp M (3.20)
X1 - Y - M(X - Y)

where

X(X - Y) + a T* |X - Yi
= (3.10)

ao [X - i - M. (X - Y)

-m(X - Y)
K = (3.20.1)

ao[ - Y - M.(X- Y)]
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and

4 4 4

T R ijk' - Y - M-(X - y)]4 ijk ( Y  ,

(3.14)

The arguments given for cancellation of retarded time

effects with reference axes in frames normal to the observer

would also be true in the general case of equation (3.17).

However, a volume integral is of importance here and retarded

times are important in the observers direction. Whether or

not these can ever be accounted for are left to the following

sections for discussion, along with general discussions of

the applications of all these equations to measurement by

crossed-beam techniques.
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IV. APPLICATION OF CROSSED BEAM TECHNOLOGY

The problems involved in applying crossed-beam technol-

ogy to sound source measurements lie in three areas.

1. Covariance Measurements -- approximation of
the covariance by parameters measurable by
crossed-beam techniques.

2. Retarded Time Effects.

3. Moving Frame of Reference.

These are discussed in this section with subcategories

for delineation of (1) low speed applications, (2) high speed

applications and (3) general applications.

4.1 COVARIANCE MEASUREMENTS

The signal measured by a single beam of the crossed-

beam system is determined by the extinction coefficient of the

dominant light extinction process. The detector signal I is

given by

I = I exp - kdi (4.1)

If the intensity is assumed to result from a mean T and

a fluctuation i,

i + I = I exp (K+k)dil

= T exp kdi

i = T exp -kd - 1

and if the total integrated fluctuations are small

i(t) = T k(Y,t)di (4.2)

With proper calibration constant accounted for, the single or

crossed-beam system then measures the statistics of the extinc-

tion coefficient whereas we wish to measure the statistics of
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a fluid property. Within a gas, and for most extinction proc-

esses available to us, the extinction coefficient is strongly

dependent upon the number of contributing particles or to the

mass density if the particles causing the extinction are uni-

formly distributed on the average. The present generation of

crossed-beam systems (8 ) uses absorption by naturally occurring

CO2 in the infrared region of the e.m. spectrum for the extinc-

tion process. Separate studies are underway to determine under

what conditions of wave length, etc., k is proportional to p,

and independent of pressure and temperature.

In any event it appears that density statistics are the

most promising approach for crossed beams and we must therefore

be able to express the sound source covariances in terms of

density.

The source term (6 ) involves the quadrupole strength

Tij = Pvivj + Pij - ao p6ij

2 (4.3)
PyiVj + (p - a o2p)6 i j

if we neglect viscosity.

In isothermal flows

p - a 2p, and Tij = P v.ij (4.4)

If there are large entropy gradients in the flow, however, the

pressure and density fluctuation may not cancel out and p-ao 2
will be determined by entropy fluctuations.

Thus in a heated jet equation (4.3) might become

Tij -(p-ao2p) 6 ij (4.5)

In the case of a supersonic jet, of course, all terms must be

included in T...
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4.1.1 Low Speed Jets (M=0)

We will restrict our discussions to isothermal jets at

low speeds. This is obviously not because of a lack of impor-

tance of heated-jet noise but is rather only to limit ourselves

to the simpler case. A much more comprehensive study is required

for the entropy fluctuation case and this is left to a future

time.

Shear Flows

In most turbulence flows of interest to us here, there

will be a large shear gradient in the flow, and turbulence will

tend to be most intense in that region. If shear is present it

has an amplifying effect upon the noise produced. From the

momentum equation

iv vij 6 + e i - (Pvivjvk+Pikvj+Pjkv i )  (4.6)

The last term will drop out when integrated over all space,

(using the divergence theorem) and dropping viscous terms we

get from equation (4.4)

yV. 6v.
(pvv) P y + = pe (4.7)

The mean rate of strain tensor may be approximated by its mean

value which we will assume to have a dominant direction yl

du
e.. ~ e = (4.8)

1 - 12 2

Then

Sdu
v = p 1  (4.9)7- (Pvivj) = P 2

and

2T.. du du2 T . fDdui a 2  d ui (4 .10 )
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Taking the mean-square value of this,
4 d2

SRijki du 12 4 RE (4.11)

where

RE(Y,A, ) = <p(Y,t) p(Y + -, t+ r) > (4.11.1)

We are therefore concerned with the second derivative

of the density covariance. It must be expressed in the moving

reference frame for use in equation (3.28), but this will be

left for later.

Homogeneous Turbulence

If there is no appreciable shear in a flow we can ob-

tain Rijki in terms of the density covariance using the approach

of Ribner. (9 ) He considers the pressure field as composed of

an ambient po, an incompressible part pO and a compressible part

p with corresponding densities related by p = ao p.

For incompressible flow Dp/Dt = 0 and equation (3.1) be-

comes -V2p - ( 2Tij/6xax.j)inc where Tij is evaluated at zero

convection speed. Substituting into equation (3.1) we obtain

D a 2 2 = -a 2  2 o (4.12)

Dt

where we have assumed (T i)com = (Ti..)incomp at zero convec-

tion speed and

0 1 o
P = p

a
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The source strength then becomes

a4 R i4
4ijk- f - R(Y,A, ) (4.13)

with

R(Y,A,) = < p(Y,t)p(Y + A, t + >)) (4.11.1)

Thus at low speeds the source strength can be written in

terms of the d.ensity covariance as required for crossed-beam

measurements.

4.1.2 High Speed Jets (M=1)

From equation (3.28) the primary term in the sound source

integral for Mach emission is

Pijk(Y-s,T) with Xr = constant
r

Now by equations (3.4) and (3.16)

(x i - Yi)(xj - yj)(xk - Yk)(xi - y) 4 Pijka (Y,X,-')

r (1 - Mcos 9)5 X

2 2S2Tij (Y, 0,t) iT. (Y,X, t + r)

)yi j )Yi Yj

and we are concerned with the component of this in the r

direction.

Now,

2Ti r. iT.. 2Tir

r yiy r a atayi rao atayi
r

- - t = r
ao (4.14.1)
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6Ti 2 2 P

- (Pvivj + Pri) - a

I r

2 p aPVr-a -- + -- (4.14.2)6Y r t

We may write

i r a - Vr (4.14.3)
r 6yr aor 6t

Substituting equations (4.14.2) and (4.14.3) into (4.14.1) we ob-

tain -r

f --- --

-i a(ro F_ ri

-e e (a o - v r )  -p- (4.14.4)
Yr Yr

If we let v = u + v' in equation (4.14.4) we get(1 0)

r = r  vr

_2 T. _2 P 2 pv r , p 6u
= (a0 - ur) + + r (4.15)

6yi Yj 6 y r  Ctay r  6t 6Yr

Shear Flows

If we are dealing with a high-shear region, only the

third term is amplified by that shear. The other terms will

tend to be small. Particularly, we can see that with Uc = a

that the factor a - u will be small. Thus we will take
o r

62Tij 6u r  P= (x i - y l
) ( x -y ) ui a p

2 (4.16)

Yi Yj r t r yj t
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where we have substituted

au (x i - yi)(x - yj) u.

2y r 3-
Y r 2yi

This gives

2 ik ,-) )u 2 < p (Y,t) p (Y + 7, t + T)
"\ > (4.17)

4 ' 6Yj )t 6t

Since this is to be determined at r = const, and further,
u. du r

taking - - - equation (4.17) becomes
~yj dY2

4 du1  2 B2 RE (YA s, T)

4 ijk (Y'ss ' T) d -

r dy2

(4.17.1)

Thus
s5 5 r du 2 2R (Y, , )

S(Y,T*) = -a (1 - Mcos 9) - - dAs d (4.18)
_ dY2

where

RE (YAs,) = p(Y,t) p(Y + A, t +T)>

r = ao ( -T*) (4.18.1)

Except for the sign, equation (4.18) is by coincidence identi-

cal with equation (4.11) for low-speed shear flow. The important

observation here is that the source intensity is determined by
the area integral of an Eulerian covariance. The gradient terms
in the time derivative do not integrate out in an area integral
and in fact dominate.

liT RESEARCH INSTITUTE

28



Homogeneous Turbulence

If the flow of a jet is supersonic there must be

large shear gradients in the flow as the velocity goes from

zero outside the jet to greater than speed of sound within

it. There should be no necessity then of attempting a

homogeneous solution for the Mach emission case.

4.1.3 General Case

In the general case, when we cannot assume either

Ml 0 or M cos9 = 1, it is not possible to approximate T..

by a simple function of density. As stated earlier however,

the Mach emission case probably covers all speeds of interest

above M=l. Below M=l, the low-speed isothermal approximation

is no doubt valid for isothermal jets over a broad range of

speeds. More serious of course is the need for an expression

in the case of heated flows. It appears that it should be

possible, however, to express entropy fluctuations directly

in terms of temperature, and consequently density fluctuations.

In an isothermal jet, it is not so much the approxima-

tion of the stress tensor covariance that presents the most

severe problem. Rather, the retarded time differences

become nonnegligible as convection speed increases, even in

the moving frame of reference. Means of accounting for

retarded time differences are discussed in the following

paragraphs.

4.2 RETARDED TIME EFFECTS

In section II, it was shown that the crossed-beam

system measures a covariance given by the expression

GE(Y ,A,T) =ff<p(ylY2 + A2 ,Y 3 ,t)p(yl + Al 1 Y2 ,y 3 + A3 ,t + T))

XdA 2 dA3
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Under conditions of homogeneity or odd-function departures

from it, this can be written as a point-plane correlation

leading to

GE(Y,Al'T ) = IRE(Y,,T) dAn (2.4)

where dAn = dA2dA3 is a plane normal to A1 . The sound source
integral on the other hand is generally of the form (from
section III)

S(Y,t,T*) P ijkl(Y,_,T) d-

(I-Mcos9)5 k (YA T) dA (4.19)

Comparison of equations (2.4) and (4.19) suggests that we might
obtain S(Y,A,t*) from a crossed-beam measurement using a

relation of the type

4 GE (Y,a l rT)
S(Y,t,T*) = (1 -M cos)5 4 ,A dA1  (4.20)

We can see now the need for obtaining the crossed-

beam covariance in the form of the point-plane covariance is
to approximate the correct covariance R under the area
integral.

A difficulty involved in the use of equation (4.20) is
immediately apparent.; r must be made identical with T, so
that

T = T = T* + (3.7.1)ao
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In order that GE(Y,Al,T) be expressed in its point-

plane form of equation (2.4), it was necessary to assume that

we could make arbitrary coordinate translations normal to y
of the type y2 -y 2 - A2 without changing the statistical prop-

erties of the covariances. This is a good approximation prob-

ably, but when the translation is made we also vary T* through

equation (3.7.1). It therefore becomes impossible in general

to maintain the correct T for arbitrary 9 and A2 . There are,

however some special cases where we do so and.these are dis-

cussed in the following paragraphs.

Another problem is associated with taking the time delay

derivative of GE. In equation (4.20) we have assumed that

f inRE( ,n ' ' nR ,T dA nf- R (Y,A,T) dA

Tn  -n Tn  E -- -

an= - GE(Y ,AT) (4.21)
6T E -n

This is obviously not the case as long as T = T(A) which in

general is the case as required by equation (3.7.1). Again

there are special cases where this is done and these are

discussed later.

4.2.1 Low Speed Jets

As shown in section III, if we transform to the moving

frame of reference a large portion of the T differences are

accounted for by the convection equation. The time scales

in the moving frame become very large in comparison with the

retarded time differences ' L/ao, where L is a typical correla-

tion length. If a)) > U, then retarded time differences may be

neglected in comparison with fluctuation time scales. Flows

which satisfy this condition have been said to contain "compact"
sound sources(11) In this case then (U <<a o ) we can put r = 0

and equation (4.20) becomes valid.
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Shear Flows

For high-shear flows,

SRiki dul 2 2RE( 'A

4 - a 2 (4.11)
4 dy 2 1 a° t2

or in the moving reference frame

4 Pij k l dul 4  2

4 dy 2  o a,2

or

4 du 2 2

S(Y,tT*) = a d (4.22)

Sdy 2  d (4.22)

If G(Y,Al,T) is measured in a frame of reference moving

with the convection speed of the flow and the flow direction

is along yl, then integral of equation (2.4) can be evaluated
at T = T = 0. Then T # T(L) and we can use equation (4.24)
to give

4 dUl2 2GL (,*I,T) d IS(Y,t,T*) = 4  du 2f 2 GL ( 1 T) d(4.23)0dy 2

The means of determining this moving axis covariance

is treated in a later section.

Homogeneous Turbulence

For homogeneous turbulence we use equations (4.13) and
(4.21) to give

S(Y,t,t*) = a GL(Y',l,T) d\ 1  (4.24)

Again GL must be measured in a moving axis frame.
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4.2.2 High Speed Jets

In section III the source integral for Mach wave

emission was developed to be

S(Y,t,T*) = (1 - M cos) 5 a 5 iJ k  d , ' da (3.28)

r

where As is tangent to the plane of the Mach front and r
is the distance variable in the direction of the ray. In

this form the retarded time is approximately constant for

the plane Ar = const. and only enters into the problem for

the time integration. Thus the surface integral itself has

instantaneously no retarded time effects making it of suitable

form for measurement by crossed-beam techniques.

In the case of shear flow, and the only one we shall

consider here, equation (3.28) can be written using equation

(4.18) as

5 5 du 2i 2RE s
S(Y,t,T*) = -(1 - M cos) aoff( 2 dA do

Assuming dul/dy2 varies slowly with hr we can write

S(Y,t,T*) -(1 - M cos9)5 a5  dul (X d d
Sdy2I - -s (4.25)

From equation (3.8)

Ar = \r + aoT (4.26)

and from equation (3.29.1)

r = -ao *
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Consequently

ar * (4.27)
0

The retarded time difference then is constant along
planes of Ar = constant.

Now if we align the crossed beams such that they lie
perpendicular to r and are spaced a distance Ar apart

GE(YAr,T) = fRE (,As,T) dAs  (4.28)

Apart from the differentiation required, it is necessary
to measure G such that T = Ar/a ° + T*. This satisfies both
the requirement for time retardation as well as following
the fluid motion at the convection speed toward the observer,
i.e., the measurement is then made in the moving frame of
reference.

The time variable a in equation (4.24) is the true time
in the moving axis system. It also satisfies the retarded
time relation. However since retarded time is independent of
As, the differentiation may come outside of the area integral
in equations (4.24), (4.27) and (4.28). Thus we can write

-(1 - M cosg) 5  5 du1 2 E'r,T) d
dY2  T-T*- r

a o

(4.29)

4.2.3 General Case

The success in choosing the coordinate system (Ar A s)
to minimize retarded time effects in the supersonic, Mach
emission case, leads us to consider the possibility of achiev-
ing like advantages in the general case.
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To this end consider the coordinate system (yrYs)

with yr in the direction of the observer. Then r = rj = r

and equation (3.16) becomes

B(X,t, *) 1
BtT* ( - M cos) 5 S(Y,t,*) dY (4.30)

162 a (1 - M cos)

with

S(Ytt) Pr ( Y , ' ,T) d (4.30.1)

and

Pr =Trr(YX,t) Trr(Y + - t + )

We can write equation (4.30.1) as

S(Y,t,T*) = f Pr(Y, %,T) d  ds ?dr (4.31)

where the inner integral now becomes similar to the required

cross-beam area integral. We note here that T can be taken

as constant within planes of Ar = constant and therefore writer
7 = A(r) or 7 = T(Ar). By equations (3.6.2)

A
S= -*+ - r

a
O

Since Pr is to be measured in the moving frame of

reference in order to minimize density gradient effects, we must

restrict the time delay of the crossed beam to

T = r
a0 M cosO
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Letting '* = 0, since it has no relevance for our analysis,

r (M cos9 - 1)A -o - (4.32)a o  M cos9

This is zero, only when M cos9 = 1 or a. = . These are
obviously the two limiting cases already discussed of Mach
emission and very low speeds.

We are left then with two alternatives at this point,
either (a) let the delay be T = Ar/a o and check to make cer-
tain that gradient fluctuations do not dominate or (b) let
T = Ar/a ° M cos9 and assume total error due to wrong retarded
time is small. Alternative (a) is probably unacceptable if
M cos9 is much different from 1 but might suffice for M cos9
close to 1i, whereas alternative (b) may extend the range of
applicability of the low speed case to higher speeds.

Retarded time errors which arise under alternative
(b) above also prohibit taking the time delay derivatives out
of the integral S. Thus we are not justified in taking the
curvature of GL. It would be necessary to differentiate
signals before correlating the two beam signals.

In essence we are just concluding that some accuracy
improvement in measuring sound sources in subsonic jets can
be obtained by orienting the beams such that they are perpen-
dicular to the direction of the observer and using equation
(4.31).

4.3 MOVING FRAME OF REFERENCE

The covariances pertinent to the determination of
sound source intensities must be measured in, or at least
related to, a moving frame of reference given by the trans-
formation

A = ao Mr
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This is required in order to minimize convection effects on

the measured covariances. We are faced with two problems

in this regard. First, the inference of a Lagrangian co-

variance from a measured Eulerian covariance and secondly,

assuring ourselves that the minimized gradients are suffi-

ciently small to be negligible relative to the "true" time

changes.

4.3.1 Minimizing Gradients Contribution

We are concerned primarily with two components of

the vector \

1. hi = A1 - ao M r (4.33)

A1 is in the flow direction.

2. \r = Ar - a0 M[cos9]r (4.34)

A is in the direction of the observer.
r

The first of these corresponds to the reference axis

most suitable for low speed jets and the second for the Mach

emission and "general" cases.

The covariances measured in the convection reference

frame most certainly maximize the average time scales. How-

ever, it is believed that a measured convection speed is

determined primarily by the energy-bearing eddies, other eddies

being convected at different speeds. The time scale is there-

fore not necessarily maximized for all eddies, but only on

the average. Those eddies which produce the sound (either K =0),

or w =0 in the two limiting cases) are not necessarily the

energy-containing ones. If they are convected at a speed Us,
then

true Us (4.35)
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instead of

[L t + y (4.36)[dt measured U 
(4.36)

as is measured at the mean convection speed. Hence, we have
a contribution of (Uc - Us) 6P/~Y1 which may exceed the true
time variations and our measurement may be meaningless to
sound source estimates. It is necessary therefore to deter-
mine the contribution of these fluctuating gradients experi-
mentally. We can show that equation (4.36) can be used to
give

-2yI ,  RE(Y, I ,T) U 2 RE (Y,A I ,)
2 2RE (Y' I ) 2 (437)

c 1

=-1 +c (4.37)

Using a similar equation obtained from equation (4.35), then
the error in 62p/ 2 is

( 2 ) P = (U2 = U2 ) 2RE (4.38)

S dAn

can be measured using crossed-Schlieren measurements(12) and
the result then compared with the measurement of

62GL

With proper data analysis the same assessment may be made for

4 GL
-4--.

The curvature of the Lagrangian autocovariance 62 p/6 2

has been shown to be somewhat sensitive to signal filtering.
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In particular, hot-wire measurements indicate a different

lifetime at high frequencies than at low frequencies. There

appeared to be very little sensitivity to frequency at low

frequencies. However, crossed-beam spectra tend to peak at

high frequencies in contrast to hot-wire spectra which show

no peak, having a large low frequency content. It may be

then that crossed-beam Lagrangian autocovariances are sensi-

tive to band pass of the associated electronics. This must

be assessed experimentally.

4.3.2 Measurement of Lagrangian Covariance Integrals

4.3.2.1 Low Speed Jets

Shear Flows

By equation (4.23)

du 2 r 2G(Y 'lT)

With the crossed-beam system, we normally measure

G(Y,A 1 = const, T) with A1 as a parameter as illustrated in

Figure 2.

The envelope of this curve is GL(Y, 1 = 0,T) =

GE(Y',A = UcT,T) the Lagrangian autocovariance. The convec-

tion speed is then determined by A = AI = UcT = 0 evaluated
at points on the envelope.

In low speed shear flowswe are interested in GE(Y,\l,
T = 0) or rather in its second derivative with respect to

time delay. At T = 0, ?1 = A1 and

S(Yt0) = 2  G(YA 1, T = 0)
S(,t,) = a duY2 2 dAl (4.40)
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G Curvature = {2G
T = 0

GL(Y' -1 = 0, T)

GE(Y, aI = const, T)

T

Figure 2 EULERIAN CROSS-COVARIANCES GE, AND
LAGRANGIAN AUTOCOVARIANCE GL
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For purposes of evaluating this integral we can let dA1 = UcdT

by Taylor's Hypothesis and equation (4.40) can be written

4  du2 l 2 GL (Y,0,0)
S(Y,t,0) = a d21 Uc '2 dT (4.41)0 dy2 67

We have used the time variable a to indicate Lagrangian

time where T refers to Eulerian. The integrand

2 GL(Y,01,0)

is obtained from the curvature of GL(Y,0,O) in the sketch. In

general GL(Y,?1,T) varies slowly and its curvature is very small

necessitating very accurate measurements at each value of Al
There are always experimental variations in the heights of the
covariances at each value of A1 and these may make derivative

measurements impossible. Another approach is to differentiate

the signals before correlating, to give

32 GE(Y ,A' ,r)- 2 Gdirectly.

Here we are faced with the problem of accurately differentiating
the signals. Only experience and a statistical error analysis

can tell us which approach is the more accurate, although analy-
sis by Krause in Reference 12, offers the possibility that sta-
tistical variation can actually be reduced by proper handling
of the differentiated signals.

If GL(Y, ?,T) keeps a constant width as T increases, i.e., just
decreases in amplitude, then

S2GL _ GL
- 0 where GL = 0,
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and we are probably not too wrong in taking

S2GL (Y'X 1, O 2 GL(Y ,,O0 )

S-6) GE (Y,Al,0) GE(Y,0,0)

Then equation (4.41) becomes

5 du 2 2GL (Y1 = 0, 1 COGE ( l T)
S(Y,t,O) = M a i 2 dT

dy2  jJG GE(Y,0,0)

= M a du1 L [2G_ (Y ,-A' O, Y) (4.42)dY2 T 0--_

where LT is an Eulerian time scale. Whether approximations

like these are valid are only determinable by actual experi-

mental measurement.

Homogeneous Turbulence

Where there is no shear amplification the preceding

analysis is still valid but the difficulty in taking the fourth
derivative of the measured covariance becomes even more of a
problem. It would seem, at this point, that the inaccuracies
which would result would be difficult if not impossible to
overcome.

4.3.2.2 High Speed Jets

In the Mach emission case

dul 2 2G(YA T)
S(Y,t,O) = - (l-M cosO)5 du2E r ' d

Y2 f T--T = r/a

(4.29)
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Here, we must measure the curvature of the Eulerian

covariance or the derivative covariance and integrate along

the Lagrangian time variable. This can be done as sketched

in Figure 3.

The lifetime o* in Lagrangian time must be sufficient-

ly short that y 2 = A1 sinG = a° a* sinG is small enough that

dul/dy2 does not vary appreciably over that distance. If it

does, then the mean gradient must be left under the integral

in equation (4.29).

We have in this case somewhat of a lesser problem in

taking the second derivative of G, since its curvature is much

greater than that of GL. Although 2 GE/6T 2 probably decreases

as a increases, as long as a* is not too long we can approximate

equation (4.29) by

5 5 dul 2  [ 2GE(Y,0,T)
S(Y,t,O) = - (1 -M cos) 5 a5 d2 * 2 -- (4.43)

2 T=0

Then we need only to measure the curvature of the crossed-beam

autocovariance and the lifetime. Also, we can approximate

the integrand by

2GE (Y,0,T) 2 62GE (Y,A ,T)

a 2 Gs (Y,A 1 ,T) (4.44)

where Gs is a gradient covariance,

ap(Y,O,t) <p(Y,O,t + -r)
s Yr 6Yr

and is measurable by crossed-Schlieren techniques(12)
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G

Curvature = E -
6T2 rT

a

T

Figure 3 CURVATURE OF EULERIAN CROSS-COVARIANCE
REQUIRED FOR MACH EMISSION CASE
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Then equation (4.43) becomes

S(Y,t,O) = - (1 - M cos9)5 a~7 d * Gs(Y,0,0) (4.45)dY 2

4.3.2.3 General Case

In the general case we have considered a frame of ref-

erence (Yr' Y2' Y3 ) with yr in the direction of the observer

and left undecided whether the reference frame should be altered

to move at the speed of sound ao or the convection speed com-

ponent a M cosO. The difference between these can be seen more

clearly by reference to the sketch in Figure 4, showing contours

of GE(, Al, T).

Assuming that the stress tensoor Trr were relatable to p
(which is not true in general but is at low speeds), and that

we can take the time delay derivatives outside of the area in-

tegral, (which is not justified, section 4.2.3) we are then con-
cerned with integrals of the form

f nG(Y, r,T)
S ~ d\r

6T
n

If hr is taken to move at sonic convection speed, Nr =A 1 - a T,

and we must integrate along lines parallel to A1 = -a MT in

the sketch to satisfy retarded time requirements.

If \r is taken to move at the particle convection speed
then we integrate along lines parallel to 61 = aoMT, to minimize

spatial gradients.

From the sketch we can see that integration along

hr = Ar = ao MT minimizes time scales whereas integration along

hr = Ar - aoT can give very short time scales resulting from
convection effects. Only at M cos9 =1, as in the sketch in
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7 A I = ao M cosQ T

1A = a o T

A 1

GE(Y, A1 , T) = const

Figure 4 EFFECT OF MOTION OF OBSERVERS REFERENCE
FRAME ON EULERIAN COVARIANCE

IIT RESEARCH INSTITUTE

46



Figure 5 are both requirements met. At a = -, the time delay

becomes unimportant, (see Figure 5) since changes in T are very

small. To assess which integration path should be used we need

a complete knowledge of G(Y, Ar, T) or at least an independent

measurement of gradient fluctuations.
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T

A1 = aoT = ao M cos9 T

Integration Paths for Mach Emission (M cosQ = 1)

T(~ )a a M cos9

A1 (_ aoT)

Integration Paths for Low Speed Case (a = co)

Figure 5 INTEGRATION PATHS FOR M = 1 AND M = 0 CASES
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V. DISCUSSION

The problems associated with applying crossed-beam tech-

nology to the measurement of sound source intensities have

been found to lie in the following general areas:

1. Measurement of correct covariance

2. Retarded time effects

3. Moving frame of reference

Another area, beyond the scope of this paper involves the

applicability of point-area correlations and must be proven

by experiments. Under certain conditions the main problems

can be circumvented in principle at least.

Use of the infrared system holds promise of giving measure-

ments directly relatable to density statistics. This does how-

ever limit us to sound source integral forms which are expressible

in terms of density covariances. It has been suggested (11)

that this representation may result in slowly converging integrals

and therefore require good measurement accuracy.

Retarded time and moving axes requirements are made less

stringent in two special limiting cases, viz., M = 0, and

M cosQ - 1. In the first of these T the retarded time variable

can be considered everywhere constant and in the second we

require only that - = constant in the "plane" of the point-

plane representation. This latter can be achieved by orienting

the crossed beams both in the plane of the Mach front.

The moving frame of reference or Lagrangian covariances

can be obtained from Eulerian covariances. The main difficulty

lies in the requirement of obtaining a great many experimental

measurements to map out fully GE(Al,T) and GL(Xl,T). The time

derivatives in the sound source integrals pose another possible
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restriction in accuracy required of measurement. To obtain

4 GL

accurately may require a great many experimental points before

differentiating. This is alleviated somewhat by the high-shear

approximation, i.e., determining

a2GL

T2

the second derivative rather than the fourth derivative.

The residual effects of density-gradient fluctuation in

the convected reference frame may also pose a major problem
if they are of the same order of magnitude as the "true" time
derivatives. It is suggested that these be estimated from
crossed-schlieren results.

An attempt to obtain a unified form of the sound source
integral applicable to crossed-beam measurements at all
speeds has been unsuccessful here. Opposing requirements on
retarded time and space-derivative minimization are a major
factor in this conclusion. Also, representation of the stress
tensor in terms of a parameter (like density) which can be
measured by crossed-beam methods appears to be impossible at
other than M = 0 and M cos9 = 1. However it is believed

that measurements using the M = 0 and M cosQ = 1 approximation
should cover nearly the complete speed range of interest.
Most serious of all assumptions made for low speed studies,
is the assumption that the jet is isothermal. The range of
validity of this approximation must be determined. Also
further analysis on entropy fluctuation measurement must be
made.
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